
Macintosh Technical Notes

New Technical Notes

Developer Support

®Macintosh

FPU Operations on Macintosh Quadra Computers
Hardware M.HW.QuadraFPU

Revised by: Tim Dierks September 1992
Written by: Jon Okada, SANEitation Engineer, DTE June 1992

This Technical Note discusses floating-point unit (FPU) instruction support on Macintosh Quadra
platforms with special emphasis given to compatibility and performance concerns.

Changes since June 1992: Added warning to check for an FPU before attempting to execute FPU
instructions.

Introduction

The Macintosh Quadra computers are the first Apple products to use the Motorola 68040
microprocessor, which has an on-chip floating-point unit (FPU). This feature enables the Quadra to
perform basic floating-point operations much faster than a Macintosh platform that employs an
MC68881/2 floating-point coprocessor working in conjunction with an MC68020/030
microprocessor. This Note addresses compatibility and performance issues for Quadra computers
executing FPU instructions either programmed explicitly in assembly language or generated by
compilers (-mc68881 and -elems881 modes for MPW compilers).

While all currently available 68040 processors have an onboard FPU, it is important to use Gestalt
to verify the existence of a floating-point coprocessor before attempting to use any FPU
instructions. Motorola has announced a variant of the 68040 without an FPU unit; this chip has
most of the caching characteristics of the current 68040, but does not support the 68881/2 opcode
set.

Unfortunately, the FPU circuitry in the 68040 does not by itself support the full functionality of the
MC68881/2. Motorola has provided a floating-point software package (FPSP) which emulates all of
the MC68881/2 functionality that is not provided by the 68040. This package resides in the
operating system of the Quadra. When the 68040 requires emulation services in the course of
executing an FPU instruction, it traps to the FPSP via one of several exception vectors, depending
on the type of emulation that is needed. The combination of the 68040 and FPSP enables Quadra
computers to run old user code without modification unless the code uses floating-point exception
handlers.

If user code includes floating-point exception handlers, the handlers must be modified to reflect the
FSAVE state frames of the 68040, which differ from those of the MC68881/2. In addition,
vectoring to such handlers for the 68040 must be done with care in order that entry to the FPSP not
be compromised.

Developer Technical Support September 1992

Macintosh Technical Notes

Whenever the 68040 in a Quadra invokes the FPSP, performance inevitably will suffer relative to an
MC68881/2 platform because the software emulation of complex algorithms involving floating-
point calculations and exception state simply cannot outperform dedicated hardware and
microcode. In addition, the instruction cache must cope with many instructions of emulation code
to accomplish what the MC68881/2 does in a single FPU instruction. Finally, FPSP intervention
flushes the FPU pipeline, thus negating any performance enhancements achievable through
overlapping execution of FPU instructions.

FPU Instructions Provided by the 68040

The following FPU instructions are supported by the 68040:

FABS Absolute value
FDABS* Absolute value rounded to double precision
FSABS* Absolute value rounded to single precision
FADD Addition
FDADD* Addition rounded to double precision
FSADD* Addition rounded to single precision
FBcc* Branch on FP condition
FCMP Comparison (sets FP condition codes)
FDBcc Test FP condition, decrement D register, and branch
FDIV Division
FDDIV* Division rounded to double precision
FSDIV* Division rounded to single precision
FMOVE Move FP data or system control register
FDMOVE* Move to FP data register rounded to double precision
FSMOVE* Move to FP data register rounded to single precision
FMOVEM Move multiple FP data registers
FMUL Multiplication
FDMUL* Multiplication rounded to double precision
FSMUL* Multiplication rounded to single precision
FNEG Negation
FDNEG* Negation rounded to double precision
FSNEG* Negation rounded to single precision
FNOP No operation (flushes FPU pipelines and forces pending

FP exceptions)
FRESTORE† Restore internal FPU state saved by FSAVE
FSAVE† Save internal FPU state
FScc Set byte integer according to FP condition
FSGLDIV Single precision division
FSGLMUL Single precision multiply
FSQRT Square root
FDSQRT* Square root rounded to double precision
FSSQRT* Square root rounded to single precision
FSUB Subtraction
FDSUB* Subtraction rounded to double precision
FSSUB* Subtraction rounded to single precision

Developer Technical Support September 1992

Macintosh Technical Notes

FTRAPcc Trap on FP condition
FTST Test FP operand and set FP condition codes

* Precision-constraining operation is not provided by MC68881/2;
precision of instruction supersedes that set in the FP control register
(FPCR).

† Privileged instruction.

Processing of these FPU instructions is usually handled entirely by the 68040. The FPSP is invoked
if an unsupported data type or format is involved or if an exceptional condition is generated that
requires fix-up of FPU state by emulation.

FPSP Overview

The FPSP provides three basic emulation services for the 68040. First, it emulates many
MC68881/2 instructions, including all transcendental functions and some arithmetic instructions.
Second, the FPSP handles instructions that involve certain data classes (unnormalized and denormal
floating-point numbers) or the packed decimal data format, which are not supported by the 68040
hardware. Finally, the FPSP provides exception handlers for certain floating-point exception
conditions in order to emulate MC68881/2 behavior when user traps are either disabled or enabled.
In the latter case, after completing its exception processing, the FPSP passes control to the user-
provided handler.

On Macintosh Quadra platforms executing MC68881/2 instructions, entry to the FPSP occurs
automatically by trapping via one of several low-memory exception vectors, depending on which
emulation service is required. The system installs the exception vector entries to the FPSP at boot
time, and applications should not tamper with these vectors. Because the FPSP preempts the
exception vectors for certain user-provided handlers in the MC68881/2 model, compatibility is a
problem for old user code that contains floating-point exception handlers. Later sections will
address the issues of compatibility in more detail.

Emulation of Unimplemented FPU Instructions

The following MC68881/2 arithmetic instructions are emulated by the FPSP, which produces
results and exceptions identical to MC68881/2 platforms:

FGETEXP Extract binary exponent of source
FGETMAN Extract mantissa (significand) of source
FINT Round source to integral value, using rounding mode in the

FPCR
FINTRZ Round source to integral value, using round-to-zero mode
FMOD Modulo remainder of destination ÷ source with sign and lowest

seven bits of quotient delivered in FP status register (FPSR)
quotient byte

FMOVECR Move constant ROM to FP data register
FREM IEEE remainder of destination ÷ source with sign and lowest

seven bits of quotient delivered in FPSR quotient byte
FSCALE Scale (multiply) destination by 2^((int) source).

Developer Technical Support September 1992

Macintosh Technical Notes

The following MC68881/2 transcendental functions are emulated by the FPSP:

FACOS Inverse (arc) cosine (radians)
FASIN Inverse (arc) sine (radians)
FATAN Inverse (arc) tangent (radians)
FATANH Inverse (arc) hyperbolic tangent
FCOS Cosine of source in radians
FCOSH Hyperbolic cosine
FETOX Base e power (e^source)
FETOXM1 e^source - 1.0
FLOG10 Base 10 logarithm
FLOG2 Base 2 logarithm
FLOGN Base e (natural) logarithm
FLOGNP1 Base e (natural) logarithm of (source + 1.0)
FSIN Sine of source in radians
FSINCOS Simultaneous sine and cosine (two destination registers)
FSINH Hyperbolic sine
FTAN Tangent of source in radians
FTANH Hyperbolic tangent
FTENTOX 10.0^source
FTWOTOX 2.0^source

The algorithms used by the FPSP to calculate transcendental functions are both accurate and fast.
Results will not always agree with those of the MC68881/2. When they disagree, the FPSP is
generally more precise. The performance of the 68040 FPSP on transcendental functions is roughly
equivalent to that of a similarly clocked MC68030/MC68882 combination.

When the 68040 in a Quadra attempts to execute any of the unimplemented MC68881/2
instructions, it traps, via vector number 11, the unimplemented F-Line opcode exception vector
stored at vector offset (low-memory address) $002C to the FPSP. The corresponding exception
handler in the FPSP saves the FPU state, decodes the instruction, fetches the operand(s), emulates
the unimplemented instruction, and restores the appropriate state to the FPU. Operands involving
unsupported data types or format are processed appropriately by this exception handler. To the user,
the emulated instructions appear as atomic operations that produce valid results and that signal the
proper floating-point exceptions. If an emulated instruction raises an enabled floating-point
exception, program flow will vector to the appropriate user exception handler.

If the code executing in a Quadra contains an F-Line opcode that is undefined by the instruction
sets of both the 68040 and MC68881/2, trapping to the FPSP via vector 11 also applies. In this case,
the handler recognizes that no emulation is necessary, and it passes control to the system F-Line
exception handler via a secondary vector stored in low memory.

Compatibility Note

If an application, such as a development or debugging environment, needs to install its own F-Line
exception handler on Quadra platforms, it must not overwrite vector 11 at offset

Developer Technical Support September 1992

Macintosh Technical Notes

$002C. If it does, emulation of the unimplemented MC68881/2 instructions will be lost with
disastrous effects to the executing program. Instead, the secondary F-Line exception vector, located
at address $1FC8, should be used on Quadra platforms. As is the case on MC68881/2 platforms,
the application should save the inherited F-Line exception vector (secondary vector in the case of
Quadra platforms) and restore it upon termination or context switch.

Unimplemented Data Type/Format Support in the FPSP

The FPU in the 68040 does not support all of the floating-point data types and formats of the
MC68881/2. The following data types require FPSP support:

denormalized single (S), double (D), or extended (X) precision operand to an FPU
instruction; and unnormalized X operand to an FPU instruction.

The following data format requires FPSP support:

packed decimal real (P) format as source or destination for an FPU instruction.

When the 68040 encounters an unimplemented data type or format in the course of executing a
hardware-supported FPU instruction, it traps, via exception vector 55, the FP unimplemented data
type exception vector stored at vector offset (low-memory address) $00DC to the FPSP. Prior to the
release of the 68040, this address was unassigned but reserved by Motorola. The unimplemented
data type exception handler in the FPSP takes the appropriate action for the instruction and the
exceptional operand or format.

For denormal S, denormal D, and all P format source operands, the FPSP converts the values to the
normalized X equivalents, restores FPU state, and restarts the operation. If a source operand is an
unnormalized X that can be converted to a normalized X, the instruction is also completed as
described. If the instruction is a move out to P format in memory (FMOVE.P FPn,<ea>), the
FPSP emulates the conversion from the extended source format to P format and writes the result to
the effective address.

For denormal X operands or unnormalized X operands that reduce to denormal X values, the FPSP
converts such operands to an internal normalized format that contains an extra exponent bit, restores
state to the FPU, and restarts the operation if no exponent wrap condition will occur (for example,
division of a denormal value by another denormal value). Otherwise, the FPSP emulates the entire
instruction.

Denormalized values resulting from instructions executed by the 68040 hardware do not generate
the unimplemented data type exception. Instead, a non-maskable underflow exception occurs which
invokes a handler in the FPSP. This handler rounds the internal result appropriately according to the
specified rounding precision and direction and delivers the result.

In the case of instructions that are emulated by the FPSP, the processing of unimplemented data
type/format operands is handled within the confines of the emulation process. That is, the 68040
traps to the FPSP’s unimplemented instruction handler, which is capable of recognizing and dealing
with such operands.

Developer Technical Support September 1992

Macintosh Technical Notes

Instructions, whether emulated or not, that use the P format as either source or destination have
relatively poor performance because they require emulation of binary-to-decimal or decimal-to-
binary conversions.

Idiosyncrasies

Binary operations (source and destination operands are both inputs) with P format source operands
should avoid using FP1 as the destination operand because a bug in the FPSP causes spurious
results in this case. If an unimplemented data type or format occurs as input to an operation, the
exception is posted by the 68040 when the next FPU instruction is attempted. This deferred
exception handling may appear not to deliver the correct result in a debugging environment that
installs a breakpoint prior to the second FPU instruction.

FPSP Exception Handlers

Certain floating-point exception conditions on the 68040 require intervention by the FPSP in order
to fix up results or other state. Some of the FPSP exception handlers are non-maskable in the sense
that they are executed regardless of whether or not the exception is trap-enabled by the user. All of
the FPSP floating-point exception handlers, whether non-maskable or not, are vectored via
Motorola-designated locations in low-memory supervisor address space. If a user-enabled
exception occurs, the FPSP exception handler is executed first before vectoring occurs to the user
handler via a secondary vector maintained by the Macintosh Quadra system. The user code must
not modify the primary floating-point exception vectors to FPSP exception handlers. A later section
will describe installation of user exception handlers.

The following is a brief description of FPSP exception handlers:

Branch/Set on Unordered (BSUN)

This maskable handler is invoked only if the user has enabled the BSUN exception. Entry to this
handler is via vector number 48 stored at location $00C0. This handler updates the floating-point
instruction address register (FPIAR) to contain the address of the floating-point branch/set
instruction that generated the exception. It then invokes the user’s handler via a secondary BSUN
vector.

Inexact Result (INEX1/INEX2)

No FPSP handler is required. When enabled, INEX1 or INEX2 exceptions invoke the user’s handler
via vector number 49 at location $00C4.

Divide by Zero (DZ)

No FPSP handler is required. When enabled, the user’s DZ handler is invoked via vector number 50
at location $00C8.

Underflow (UNFL)

This non-maskable handler is entered via vector number 51 at location $00CC. It determines and
stores the properly rounded underflow result based upon the value of the intermediate

Developer Technical Support September 1992

Macintosh Technical Notes

result and the rounding precision/direction modes stored in the FPCR. If underflow is enabled in the
FPCR, the user’s handler is invoked via a secondary UNFL vector.

Operand Error (OPERR)

This non-maskable handler is entered via vector number 52 at location $00D0. It provides
compatibility of results with the MC68881/2 for B, W, and L destination formats when the source
operand is a NaN (Not-a-Number), infinity, or value too large for the integer format. If the OPERR
exception is user-enabled, the FPSP handler invokes the user’s handler via a secondary OPERR
vector.

Overflow (OVFL)

This non-maskable handler is entered via vector number 53 at location $00D4. It determines and
stores the properly rounded overflow result based on the value of the intermediate result and the
rounding modes stored in the FPCR. If overflow is enabled in the FPCR, the user’s handler is
invoked via a secondary OVFL vector.

Signaling Not-a-Number (SNAN)

This non-maskable handler is entered via vector number 54 at location $00D8. It provides
compatibility of results with the MC68881/2 for B, W, and L destination formats. If the SNAN
exception is user-enabled, program flow is directed to the user’s handler via a secondary vector.

If a program enables no floating-point exceptions in the FPCR, compatibility is not an issue. In this
case, no user exception handlers need be installed. The program traps to non-maskable FPSP
handlers as required for any fix-up of exceptional results or FPU state and then resumes execution.

Performance degradation by non-maskable FPSP floating-point exception handling is minimal in
most cases because such intervention is rarely needed. The most common exception, INEX2,
requires no FPSP support. Underflows and overflows are infrequent when the default extended
rounding precision is employed. OPERR occurrences are also rare, unless many out-of-range
conversions occur from floating-point to integer formats.

User Floating-Point Exception Handlers

Users who require floating-point exception handlers in their applications running on Macintosh
Quadra platforms must exercise some care in both the writing and the installation of such handlers.
Moreover, if an application also targets Macintosh computers with MC68881/2 coprocessors and
intends to resume processing via an RTE in an exception handler, its exception handlers must query
which kind of FPU (MC68881/2 or 68040) is present and then execute hardware-specific code
based on the query result. The reader is urged to consult the user manuals for the 68040 and
MC68881/2 for details not covered by this Note.

Each floating-point exception on the 68040 is reported by either the conversion unit (CU) or
normalization unit (NU) pipeline stage of the FPU. Exceptions reported by the CU are called E1
exceptions; they are detected relatively early in the execution of an FPU instruction. Exceptions
reported by the NU are called E3 exceptions; they are detected late in the execution of FPU
instructions as the NU attempts to normalize and round the intermediate result for storage in a
destination FP register. E1 exceptions include all floating-point exception types.

Developer Technical Support September 1992

Macintosh Technical Notes

The only E3 exceptions are OVFL, UNFL, and INEX2 occurring on opclass 0 (register-to-register)
and opclass 2 (memory-to-register) instructions. If both E3 and E1 exceptions exist at the same
time, the E3 exception should be handled first, allowing the 68040 to subsequently trap to handle
the pending E1 exception.

There are two FSAVE stack frames for floating-point exceptions on the 68040. E1 exceptions
produce the unimplemented instruction FPU state frame, and E3 exceptions produce the busy FPU
state frame. Both of these frames begin with a 1-byte version number followed by a 1-byte frame
length. The version number for Quadra 68040s is $41. For this version of the 68040, the frame
length for E1 exceptions is $30, making the unimplemented instruction FPU state frame 52 bytes in
size (counting the 4-byte header). The busy frame for E3 exceptions has a frame length of $60 and
total size of 100 bytes.

Both 68040 floating-point exception FSAVE stack frames contain information that may be of use to
the user’s exception handler. There are two 12-byte fields containing the source and destination
operands in extended precision. There are two 3-bit tag fields which classify the source and
destination operands as to whether they are normalized, denormalized, zero, infinite, or NaN.There
are two bits (E1 and E3) which, if set, indicate which pipeline stage of the FPU (CU or NU)
detected the pending exception(s). Both FSAVE frames encode the command word of the
exceptional floating-point instruction, albeit in different fields.

As a minimum, user floating-point exception handlers on 68040 platforms must issue an FSAVE
instruction as the first FPU operation, clear the exception state of the FPU, and resume processing
via the RTE instruction. For E3 exceptions, the E3 bit in the FSAVE stack frame must be cleared
and the FRESTORE instruction must be issued prior to the RTE instruction. For E1 exceptions, the
minimum requirement is to throw away the FSAVE stack frame and to resume processing via RTE.
Another method of clearing the exception state for E1 exceptions is to clear the E1 bit in the
FSAVE stack frame and issue the FRESTORE prior to the RTE. The E1 and E3 bits are bits 2 and 1
(bit position 0 representing the least significant bit), respectively, of the byte which is located 28
bytes below the high-address end of either FSAVE frame.

Minimum Floating-Point Exception Handler for the MC68881/2 and Quadra

The following code sequence serves as a minimum handler for all enabled floating-point exceptions
except BSUN on both with MC68881/2 platforms and Quadra computers. This handler simply
clears the exceptional condition in the FPU and resumes execution without attempting to modify
any other FPU state. A minimal BSUN handler would require additional intervention (via one of
four methods outlined in the user manuals for the 68040 and the MC68881/2) to prevent infinite
looping on the BSUN trap.

; **
; Minimum user handler for enabled INEX, DZ, UNFL, OPERR, OVFL,
; or SNAN floating-point exception on either MC68881/2 or
; Macintosh Quadra platforms.
;
; NOTE: For enabled DZ, OPERR, and SNAN exceptions for instructions
; with FP register destinations, no result is delivered at all to the
; destination register.

Developer Technical Support September 1992

Macintosh Technical Notes

; **
HANDLER:

FSAVE -(SP) ; save internal FPU state
MOVE.L D0,-(SP) ; save D0, STACK: D0 save < FSAVE frame
MOVEQ #0,D0 ; zero D0
MOVE.B 4(SP),D0 ; NULL frame?

BEQ.B @NULL ; yes, restore D0 and FPU state

CMPI.B #$41,D0 ; Quadra (68040) ID?

BNE.B @COPROC ; no, assume MC68881/2

; Quadra FSAVE frame
MOVE.B 5(SP),D0 ; D0 <- frame size

BEQ.B @NULL ; restore state if 68040 IDLE frame

; Quadra UNIMPLEMENTED INSTRUCTION or BUSY FSAVE frame
SUBI.B #20,D0 ; D0 <- offset of E1/E3 byte from (SP)
BCLR.B #1,(SP,D0) ; test and clear E3 byte
BNE.B @NULL ; restore state if E3 was set

BCLR.B #2,(SP,D0) ; E1 exception, clear E1 byte

; Restore state and resume execution
@NULL: MOVE.L (SP)+,D0 ; restore D0, STACK: FSAVE frame

FRESTORE (SP)+ ; restore FPU state
RTE ; resume processing

; MC68881/2 IDLE FSAVE frame
@COPROC: MOVE.B 5(SP),D0 ; D0 <- IDLE frame size

ADDQ.B #4,D0 ; compensate for D0 save value on stack
BSET.B #3,(SP,D0) ; set bit 27 of BIU
BRA.B @NULL ; restore state

Installation of User Floating-Point Exception Handlers

Current MPW language libraries (MPW 2.0.2 or later releases and Language Systems FORTRAN
version 3.0) provide for the vectoring of user floating-point exception handlers in a consistent and
portable fashion for both Quadra and MC68881/2 Macintosh platforms. The C functions
settrapvector and gettrapvector, the Pascal procedures SetTrapVector and
GetTrapVector, and the Language Systems FORTRAN subroutines SetTrapVector and
GetTrapVector allow users to install and read vectors to their floating-point exception handlers
via the use of the TrapVector structure. The relevant interface files for these operations are
{CIncludes}SANE.h, {PInterfaces}SANE.p, and {FIncludes}SANE.f.

A TrapVector structure is composed of seven 4-byte fields that represent the entry-point
addresses of the user’s BSUN, INEX, DZ, UNFL, OPERR, OVFL, and SNAN exception handlers,
respectively. GetTrapVector routines read the current floating-point exception vectors into a
TrapVector structure. In order to install their own exception handlers, users

Developer Technical Support September 1992

Macintosh Technical Notes

must first initialize a TrapVector structure with entry points of their handler routines and then
invoke a SetTrapVector routine with that structure as the operand.

GetTrapVector and SetTrapVector routines involve privileged operations because they
access Motorola low-memory vector table locations. For Quadra platforms, the situation is further
complicated by the fact that five of the seven user floating-point exception vectors are stored by the
system in secondary locations because the FPSP has preempted the original vector table locations.
GetTrapVector and SetTrapVector implementations circumvent these difficulties by
calling a system utility, PrivTrap, which does all of the work of querying or installing the user’s
vectors.

The PrivTrap Mechanism

PrivTrap is implemented as a system trap, $A097. Upon entry, it expects a selector value in
register D0.W and a TrapVector structure address in address register A0. The
GetTrapVector operation requires a selector value of 1; in this case, PrivTrap reads the
current floating-point exception vectors into the TrapVector structure at (A0). The selector
value of 2 invokes the SetTrapVector operation; the user’s exception vectors in the
TrapVector structure at (A0) are installed appropriately in the system. In either case, registers
A0 and A1 are modified upon exit.

As of the drafting of this Note, only the Quadra and PowerBook 170 platforms running system
software version 7.0.1 have the PrivTrap mechanism built into their systems. Individual MPW
library functions that require PrivTrap functionality first query if PrivTrap is installed. If it is
not, the library routines will install and call a version of the trap appropriate for an MC68881/2
platform.

Implementation Notes

Since MultiFinder under system software version 6.0.x and Finder under current versions of System
7 do not include user exception vectors among the FPU state that is saved and restored at context
switch, it is the responsibility of an application that enables floating-point exceptions to save
inherited user exception vectors and to restore them upon termination or context switch. The
inherited vectors may be read using the GetTrapVector operation. The application installs its
floating-point exception handlers via the SetTrapVector operation. At context switch or
program termination, SetTrapVector should be used to restore the appropriate exception
vectors. If the above regimen is followed, the application’s TrapVector structure may contain
arbitrary values for vectors corresponding to disabled exceptions.

Performance Issues

In order to extract the maximum floating-point performance on a Macintosh Quadra, an application
should avoid invoking emulation by the FPSP whenever possible. Unfortunately, FPU instruction
sequences that optimize Quadra performance often degrade performance to some extent on
MC68881/2 platforms. Programmers must always weigh the performance requirements of their
various target platforms when writing floating-point code.

Developer Technical Support September 1992

Macintosh Technical Notes

Transcendental Functions

Although all FPU transcendental function instructions are emulated by the FPSP on Quadra
platforms, performance is comparable to a similarly clocked platform using the MC68882.

Unimplemented Arithmetic Functions

If deemed desirable for performance reasons on Quadra platforms, workarounds can readily be
devised for most of the arithmetic FPU instructions that are emulated by the FPSP. The FMOD and
FREM instructions are the notable exceptions since they involve an iterative algorithm in their most
general cases. The functionality of the remaining unimplemented arithmetic instructions can be
emulated as follows:

FGETEXP If the argument is a NaN or zero, return the argument. If the argument is infinite,
return a NaN and signal OPERR. Otherwise, write the floating-point argument to stack,
extract, and unbias the exponent using integer operations, and deliver the result to FPn using
FMOVE.L <ea>,FPn.

FGETMAN If the argument is a NaN or zero, return the argument. If the argument is infinite,
return a NaN and signal OPERR. Otherwise, write the floating-point argument to the stack in
extended format, normalize the significand (mantissa) if necessary, set the exponent bits to
$3FFF, retain the original sign bit, and deliver the result to FPn using FMOVE.X <ea>,FPn.

FINT If the argument is zero or if the exponent of the argument is greater than 62, return the
argument. If the exponent of the argument is less than 31, round the argument to integral value
by conversion to integer format via FMOVE.L FPn,<ea> followed by conversion back to X
format via FMOVE.L <ea>,FPm. Otherwise, decompose the argument into an integral part
(via integer operations on the X format on the stack) and a fractional part (via subtraction of
the integral part from the argument), convert the fractional part to an integer via FMOVE.L
FPn,<ea>, and add the integer to the integral part.

FINTRZ Using integer operations on the argument stored in extended format on the stack,
test and zero out the fractional part. Set INEX2 if any fraction bits were nonzero. The test for
inexactness may be omitted if the application is indifferent to INEX2 being signaled by this
rounding operation.

FMOVECR Store desired constant in extended format in the code segment of program and
load it via FMOVE.X <ea>,FPn.

FSCALE Convert the integral source operand n to a floating-point factor 2.0^n on the stack.
Obtain the scale result via multiplication of that factor with the destination operand.

FINTRZ and Floating-Point → Integer Conversions

The most common compiler-generated unimplemented arithmetic FPU instruction is FINTRZ
during conversions of floating-point values to various signed integer formats in C or FORTRAN
source code. For example, to convert the value in FPn to 32-bit integer value at <ea>, a compiler
will generate the following code sequence:

Developer Technical Support September 1992

Macintosh Technical Notes

FINTRZ FPn,FPm ; truncate to integral value
FMOVE.L FPm,<ea> ; convert to integral format

If the application is running in (IEEE 754) default mode (FPCR = $00000000: no exceptions are
enabled, rounding precision is extended, rounding direction is round-to-nearest), the following code
sequence will accomplish the same conversion with optimal performance on a Quadra and with
minimal performance degradation on an MC68881/2 platform:

FMOVE.L #$00000010,FPCR ; set round-to-zero mode
FMOVE.L FPn,<ea> ; truncate to integral format
FMOVE.L #$00000000,FPCR ; restore default modes

If the user’s FPCR setting is not the default, the last sequence must be modified to save and restore
the user’s FPCR setting at the cost of several instructions and some temporary storage. Throughput
for these conversions may be enhanced if the application requires an array of floating-point values
to be converted, because the FPCR needs to be modified only once before and once after all
conversions are done via the FMOVE.L FPn,<ea> step. Out-of-range source values result in
degraded performance on Quadra computers due to nonmaskable vectoring to the OPERR handler
in the FPSP.

Workarounds for conversions from floating-point values to the unsigned integer formats of C are
more complicated and of necessity slower than those to signed integer formats.

Miscellaneous Performance Tips for Quadra Applications

In order to minimize trapping to the FPSP for handling of exceptional conditions, data types, or data
formats, the following hints may prove useful:

• Applications should run with extended rounding precision set in the FPCR.

• Temporary storage for intermediate floating-point results should be in extended
format and preferably in FP registers.

• Applications should avoid the generation of unnormalized extended format values via
integer operations with subsequent reliance on the FPU to normalize the results.

• Applications should avoid the extensive use of the Motorola packed decimal (P) data
format.

MPW QR6 Libraries

The MPW QR6 folder in the E.T.O. #6 Developers CD contains C and Pascal libraries that have
been performance-tuned. In particular, some of the -mc68881 mode implementations have been
modified to obtain better performance on Quadra platforms. Included among the new
implementations are conversions from floating-point to the unsigned integer formats of C.
Unfortunately, conversions to signed integer formats are generated in-line by the C compiler and
thus still include the FINTRZ instruction, which is emulated by the FPSP in Quadra platforms.

Developer Technical Support September 1992

Macintosh Technical Notes

Summary

FPU operations on Macintosh Quadra platforms are performed by a combination of circuitry in the
68040 microprocessor and emulation code in the FPSP. The 68040 provides very fast
implementations of most of the basic floating-point arithmetic functions in the MC68881/2
instruction set. The FPSP emulates all transcendental functions and some arithmetic functions. In
addition, the FPSP handles instructions that involve certain data types/formats that are unsupported
by the 68040 hardware and fixes up state when certain exceptional conditions arise during
processing.

Compatibility of results relative to MC68881/2 platforms holds for all FPU arithmetic instructions,
whether or not they are emulated on Quadra computers. Results for transcendental FPU instructions
may differ, and they are generally more precise on the Quadra.

FPU applications that run with no floating-point exceptions enabled in the FPCR and that do not
install an unimplemented F-Line Opcode handler will run without modification on both
MC68881/2 and Quadra platforms. User unimplemented F-Line exception handlers are installed via
vector 11 at address $002C on MC68881/2 platforms and via a secondary vector at address $1FC8
on Quadra platforms. Similarly, installation of user floating-point exception handlers for enabled
exceptions must take care not to overwrite entry points to the FPSP on Quadra platforms. MPW
libraries provide high-level installation procedures for user floating-point exception handlers. If
such handlers are to run on all FPU platforms, they must take into account the differences in
FSAVE state frames for Quadra and MC68881/2 platforms.

Optimizing FPU performance on Quadra computers is largely a matter of understanding the
conditions under which the FPSP is invoked and then avoiding such conditions via workarounds
whenever possible. Code sequences thus optimized for Quadra computers will often provide less
than optimal performance on MC68881/2 platforms.

Further Reference:
 • MC68881/MC68882 Floating-Point Coprocessor User’s Manual
 • MC68040 32-Bit Microprocessor User’s Manual
 • MC68040 Designer’s Manual, Section 3: Floating-Point Emulation
 • M68000 Family Programmer’s Reference Manual
 • IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)

Developer Technical Support September 1992

